Antecedent moisture and temperature conditions modulate the response of ecosystem respiration to elevated CO<sub>2</sub> and warming
نویسندگان
چکیده
Terrestrial plant and soil respiration, or ecosystem respiration (Reco), represents a major CO2 flux in the global carbon cycle. However, there is disagreement in how Reco will respond to future global changes, such as elevated atmosphere CO2 and warming. To address this, we synthesized six years (2007–2012) of Reco data from the Prairie Heating And CO2 Enrichment (PHACE) experiment. We applied a semi-mechanistic temperature–response model to simultaneously evaluate the response of Reco to three treatment factors (elevated CO2, warming, and soil water manipulation) and their interactions with antecedent soil conditions [e.g., past soil water content (SWC) and temperature (SoilT)] and aboveground factors (e.g., vapor pressure deficit, photosynthetically active radiation, vegetation greenness). The model fits the observed Reco well (R 2 = 0.77). We applied the model to estimate annual (March–October) Reco, which was stimulated under elevated CO2 in most years, likely due to the indirect effect of elevated CO2 on SWC. When aggregated from 2007 to 2012, total six-year Reco was stimulated by elevated CO2 singly (24%) or in combination with warming (28%). Warming had little effect on annual Reco under ambient CO2, but stimulated it under elevated CO2 (32% across all years) when precipitation was high (e.g., 44% in 2009, a ‘wet’ year). Treatment-level differences in Reco can be partly attributed to the effects of antecedent SoilT and vegetation greenness on the apparent temperature sensitivity of Reco and to the effects of antecedent and current SWC and vegetation activity (greenness modulated by VPD) on Reco base rates. Thus, this study indicates that the incorporation of both antecedent environmental conditions and aboveground vegetation activity are critical to predicting Reco at multiple timescales (subdaily to annual) and under a future climate of elevated CO2 and warming.
منابع مشابه
Antecedent moisture and temperature conditions modulate the response of ecosystem respiration to elevated CO2 and warming.
Terrestrial plant and soil respiration, or ecosystem respiration (Reco ), represents a major CO2 flux in the global carbon cycle. However, there is disagreement in how Reco will respond to future global changes, such as elevated atmosphere CO2 and warming. To address this, we synthesized six years (2007-2012) of Reco data from the Prairie Heating And CO2 Enrichment (PHACE) experiment. We applie...
متن کاملEffect of Soil Moisture on the Response of Soil Respiration to Open-Field Experimental Warming and Precipitation Manipulation
Soil respiration (RS, Soil CO2 efflux) is the second largest carbon (C) flux in global terrestrial ecosystems, and thus, plays an important role in global and regional C cycling; moreover, it acts as a feedback mechanism between C cycling and global climate change. RS is highly responsive to temperature and moisture, factors that are closely related to climate warming and changes in precipitati...
متن کاملBelowground carbon responses to experimental warming regulated by soil moisture change in an alpine ecosystem of the Qinghai–Tibet Plateau
Recent studies found that the largest uncertainties in the response of the terrestrial carbon cycle to climate change might come from changes in soil moisture under the elevation of temperature. Warming-induced change in soil moisture and its level of influence on terrestrial ecosystems are mostly determined by climate, soil, and vegetation type and their sensitivity to temperature and moisture...
متن کاملExperimental Studies of CO2 Capturing from the Flue Gases
CO2 emissions from combustion flue gases have turned into a major factor in global warming. Post-combustion carbon capture (PCC) from industrial utility flue gases by reactive absorption can substantially reduce the emissions of the greenhouse gas CO2. To test a new solvent (AIT600) for this purpose, a small pilot plant was used. This paper presents the results of studies ...
متن کاملEstimation of the Carbon Footprint in Dairy Sheep Farm
By 2050, the earth’s population is expected to be more than 9 billion. The need for secure food and water supply will force agriculture to increase production. The major greenhouse gases (GHGs) from the livestock sector are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) throughout the production process. These gases are the key contributor to an in...
متن کامل